A framework for multi-objective optimisation based on a new self-adaptive particle swarm optimisation algorithm
نویسندگان
چکیده
منابع مشابه
Multi-objective particle swarm optimisation methods
This study compares a number of selection regimes for the choosing of global best (gbest) and personal best (pbest) for swarm members in multi-objective particle swarm optimisation (MOPSO). Two distinct gbest selection techniques are shown to exist in the literature, those that do not restrict the selection of archive members and those with ‘distance’ based gbest selection techniques. Theoretic...
متن کاملClustering-Based Leaders' Selection in Multi-Objective Particle Swarm Optimisation
Clustering-based Leaders’ Selection (CLS) is a novel approach for leaders selection in multi-objective particle swarm optimisation. Both objective and solution spaces are clustered. An indirect mapping between clusters in both spaces is defined to recognize regions with potentially better solutions. A leaders archive is built which contains representative particles of selected clusters in the o...
متن کاملA New Binary Particle Swarm Optimisation Algorithm for Feature Selection
Feature selection aims to select a small number of features from a large feature set to achieve similar or better classification performance than using all features. This paper develops a new binary particle swarm optimisation (PSO) algorithm (named PBPSO) based on which a new feature selection approach (PBPSOfs) is developed to reduce the number of features and increase the classification accu...
متن کاملOptimisation Of Boids Swarm Model Based On Genetic Algorithm And Particle Swarm Optimisation Algorithm (Comparative Study)
In this paper, we present two optimisation methods for a generic boids swarm model which is derived from the original Reynolds’ boids model to simulate the aggregate moving of a fish school. The aggregate motion is the result of the interaction of the relatively simple behaviours of the individual simulated boids. The aggregate moving vector is a linear combination of every simple behaviour rul...
متن کاملA fuzzy adaptive turbulent particle swarm optimisation
Particle Swarm Optimisation (PSO) algorithm is a stochastic search technique, which has exhibited good performance across a wide range of applications. However, very often for multimodal problems involving high dimensions, the algorithm tends to suffer from premature convergence. Analysis of the behaviour of the particle swarm model reveals that such premature convergence is mainly due to the d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Information Sciences
سال: 2017
ISSN: 0020-0255
DOI: 10.1016/j.ins.2017.08.076